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Introduction

What is multimodal abstractive summarization (MAS)?

Multimodal abstractive summarization (MAS) is a task that aims to summarize 

data with multiple modalities and provide a short, concise and readable textual 

summary to let users quickly acquire the essential information about the video 

data.



Video Frames

. . .
. . .

So now we are going to go 
over some basics sheet music 
readings for the key of g flat 
major. so you noticed the key 
of g flat, when you are reading 
real books, there is going to be 
a treble cleft here. it is going to 
have 6 flats 1, b flat, e flat, a 
flat, d flat, g flat and c flat. so 6 
flats equals key of g flat. [...] so 
if you have a flat and there is a 
natural sign, play the a. so go 
through the scale and you've 
got g flat, a flat, d flat, c, flat, d 
flat, e flat and f, so f is your 
only 9 flat note in the scale. 
(No mention of the piano)

Video Transcript Ground Truth Summary

Learn how to read and write 

music intervals for improving 

your playing and improvisa- 

tional skills on the piano in this 

free video clip series.

Example
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Model Pre-training

Generative Large Pre-trained Language Models (GPLMs)

● GPT/GPT-2/GPT-3

● UniLM

● BART

● T5

● . . .
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Vision-Language (VL) Pre-trained Models

● Classification

○ LXMERT, VLBERT, VideoBERT, UNITER, CLIP, ALIGN, etc.

● Text generation with image input

○ VL-BART/T5, E2E-VLP, SIMVLM, etc.



Model Pre-training

Vision-Language (VL) Pre-trained Models

● Classification

○ LXMERT, VLBERT, VideoBERT, UNITER, CLIP, ALIGN, etc.

● Text generation with image input

○ VL-BART/T5, E2E-VLP, SIMVLM, etc.

Problem:
No VL pre-trained models yet for text generation with video+text input.



Methodology

We propose an economical and practical method to leverage and adapt 
existing GPLMs to the MAS task.

● No need for pre-training

● Minimize the damage to GPLMs’ text generation ability while 
enabling them to handle multimodal data.

● Has the potential to be extended to other multimodal generation 
tasks
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Experimental Settings
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Fig. 2 An Example from the how2 dataset[1] We use video, transprictions and 
summaries in our experiments.Training: 73,993; Validation: 2,965; Testing: 2,156

Video Feature Extraction
A 2048-dimensional feature representation 
is extracted for every 16 non-overlapping 
frames using a 3D ResNeXt-101
model [2]

GPLMs
BART-base
T5-base

Software and Hardware
pytorch-lightning
4 RTX 2080Ti
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Content-F1

1. Obtain alignment between the summaries and reference by 

METEOR toolkit 

2. Remove the function words and task-specific stop words from the 

summaries and references

3. The remaining content words from the summaries and references 

are treated as two bags of words, and the F1 scores are calculated 

over the alignment.
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Main Results
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How to Inject Visual Information

1. Cross modal Dot-product 

attention and Multi-head 

attention are two effective ways 

to inject visual information.

2. Multi-head attention is a better 

approach to inject visual 

information.
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How to Inject Visual Information

The visual guidance contributes 83.6% of the 

overall improvement on average of all ROUGE 

scores.

Model R-1 R-2 R-L

MFFG 62.3 46.1 58.2

BART 64 46.4 58.9

Best 68 51.4 63.3

Table. 7 The ROUGE scores improvements
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Where to Inject Visual Information

Injecting at a higher layer in Encoder 

(closer to the encoder output) brings 

more improvement.
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Effects of the Forget Gate

The model can still generate reasonable 

summary for it by paying more attention to 

the visual information.
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Conclusion and Future Work

1. Propose two types of attention mechanisms for the text-vision fusion and 

interaction by by inserting attention-based add-on layers to GPLMs: 1) 

Cross-modal Dot-product Attention; and 2) Cross-modal Multi-head 

Attention. 

2. Experimental results show multi-head attention is more robust than the 

dot-product attention and higher layers of the encoder is the optimal place.

3. For future work, we believe that our analyses on the how and where to inject 

visual information into GPLMs can be applied to other multimodal tasks.



Thank you for Listening
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Check our code

https://github.com/HLTCHKUST/VG-GPLMs


